睿地可靠度論壇(TW-REDI Forum)

標題: QKC20191122:彭鴻霖_品質人解讀人工智慧 [打印本頁]

作者: hlperng    時間: 2019-11-21 11:27:46     標題: QKC20191122:彭鴻霖_品質人解讀人工智慧

本帖最後由 官生平 於 2019-11-23 01:21 編輯

品質學會品質知識社群 (QKC) 研討會
專題:品質人解讀人工智慧
時間:2019 年 11 月 22 日(星期五) 19:00 - 21:00   
地點:品質學會九樓教室(台北市羅斯福路 2 段 75 號)
主講:彭鴻霖會友

[attach]2916[/attach]
[attach]2917[/attach]



[attach]2918[/attach][attach]2919[/attach][attach]2920[/attach][attach]2921[/attach]

作者: hlperng    時間: 2019-11-21 11:37:01

本帖最後由 hlperng 於 2020-1-4 09:30 編輯

緣起:
QKC 會友 Tina 在 QKC Line 群組上傳了兩篇文章:

作者簡歷:

科技的開發與產品的研製,是以食、衣、住、行、育、樂、身、心、靈等為標的。

人工智慧的數學基礎是機率理論與資訊理論,機器學習應用大量的機率理論、深度學習則是資訊理論的發揮。機率理論解惑、資訊理論推論。機率理論處理數據的均、差、偏、峰,資訊理論定調物體的移、彎、扭、顫。

人工智慧技術的發展與應用深深影響人類的生活與文明,相對地帶來的風險,其程度可能遠大於核子技術,即使是發生的機率非常低,也不能忽視此一課題,特別是要從倫理 (ethics)、道德 (morals)、與道義 (deontology) 的角度切入,相關議題包括:負責的人工智慧 (Responsible AI)、值得信賴的人工智慧 (Trustworthy AI)、人工智慧倫理 (AI Ethics)。

人工智慧是利用電腦程式模擬人類的智慧行為,包括:感官感知 (perception)(拼音辨讀、視覺辨識)、大腦認知 (recognition) (理解學習、推理決策)、與身心動作 (action)(認知決策、意見表達、位置移動、動作控制):

應用人工智慧在技術創新,可協助企業改善生產力與提升競爭力。

2017 年美國國會議員 Maria Cantwell 提議法案,定義人工智慧應該滿足以下列特徵:

人工智慧的關鍵在數位轉型,最大挑戰為改變過去習慣。改變不在於時間,而是在於意願。人工智慧帶給社會優勢,不是取代人類。機器人無法取代人與人之間的溫暖與愛心。

資訊科學、心理學、哲學、統計學等學術領域開始合併,產生了現代人工智慧的基礎。
AI 加速發展的原因:更多的數據 (more data)、更快的硬體 (better hardware)、更好的演算法 (better algorithms)。

近十年來人工智慧產業的突破都要歸功於機器學習。
人工智慧 (AI) ⇒ 機器學習 (ML) ⇒ 深度學習 (DL)
資通訊科技三大新應用趨勢:AI、AIoT、Blockchain


人工智慧的發展歷史回顧:
世界各國已經把人工智慧當作國家策略,AI 可以說是繼原子、奈米之後,另一個普及到庶民層級的科技新名詞。


RD01 page 4:
[attach]2914[/attach]


RD01 page 7
人工智慧技術開發的萌起、成長、低潮、再出發。


[attach]2915[/attach]




異常偵測

品質人的角色:過程 (process) 或產品 (product)

人工智慧機器學習的數據處理功能:線性鑑別分析與邏輯回歸。線性鑑別,觀測數據與假設模型的線性關係,作為辨識與預測的基礎。線性代數中的最小平方法 (LSM) ,計算殘差平方和 (RSS) 數值求解。


參考資料:







作者: hlperng    時間: 2020-1-4 09:31:59

本帖最後由 hlperng 於 2020-1-6 12:51 編輯

負責的人工智慧 (Responsible AI, RAI)

Microsoft 對於負責的人工智慧 的六項指導原則:





負責的人工智慧框架的四個關鍵領域:


谷歌 (Google) 提出負責的人工智慧應該具備機器學習公平性、可解釋性、隱私性、與保全性等特質,建議及實踐的實務包括:





Source: https://s3.amazonaws.com/dev.ass ... le-ai-3-600x325.png


為了能夠產出可以理解和完善的輸出結果,人工智慧的學習過程必須有足夠且正確的數據與資訊。
對於負責的人工智慧的圖形技術而言,與所展示的圖形相關的所有周邊資訊所構成的內涵 (context) 是相當重要的因素。內涵不明確的人工智慧,缺乏適切的情境,無法提供更適合人類決策的有用建議。內涵有助於決策建議的可解釋性與透明性,使飲用決策建議的人可以有更好的全貌與看清楚的決策過程。



參考資料:









歡迎光臨 睿地可靠度論壇(TW-REDI Forum) (http://m1.kdi.tw/) Powered by Discuz! X2